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Abstract. Until quite recently, the backbone of nearly every state-of-
the-art computer vision model has been the 2D convolution. At its core,
a 2D convolution simultaneously mixes information across both the spa-
tial and channel dimensions of a representation. Many recent computer
vision architectures consist of sequences of isotropic blocks that disentan-
gle the spatial and channel-mixing components. This separation of the
operations allows us to more closely juxtapose the effects of spatial and
channel mixing in deep learning. In this paper, we take an initial step
towards garnering a deeper understanding of the roles of these mixing
operations. Through our experiments and analysis, we discover that on
both classical (ResNet) and cutting-edge (ConvMixer) models, we can
reach nearly the same level of classification performance by only learning
channel mixing and leaving the spatial mixers at their random initial-
izations. Furthermore, we show that models with random, fixed spatial
mixing are naturally more robust to adversarial perturbations. Lastly,
we show that this phenomenon extends past the classification regime, as
such models can also decode pixel-shuffled images.
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1 Introduction

For the better part of the last two decades, cascades of learned convolutions
have formed the backbone of nearly every innovation in the field of computer
vision and pattern recognition. From distinguishing ten digits with LeNet [16]
to one thousand classes with AlexNet [15], from going very deep with VGG [20]
to even deeper with InceptionNet [21], the learned 2D convolution has served
as the workhorse that ushered in the new era of visual learning. Convolutional
neural networks (CNNs) learned to exploit the correlations across channels and
between spatially close pixels to solve a plethora of tasks.

Recently, isotropic networks (those in which the size of the representation
stays fixed throughout) such as Vision Transformer [8], Image GPT [4], MLP-
Mixer [22], and ConvMixer [23] have been grabbing the field’s attention. These
isotropic models consist of repeated blocks wherein each block consists of a
spatial mixing operation (self-attention [8,4], spatial MLP [22], or depthwise
convolution [23]) followed by one or more strictly channel-mixing layers (1×1
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or “pointwise” convolutions). A strictly spatial mixing operation is defined here
as any operation that is applied independently across each channel. Similarly, a
strictly channel-mixing layer is applied independently across spatial pixel coordi-
nates. The fact that all these recent state-of-the-art isotropic architectures spend
a significant portion of their computation budget solely on channel-mixing pa-
rameters hints toward the possibility that channel mixing may have significantly
more relative importance than previously appreciated.

It has been understood for some time that impressive performance can be
obtained from networks whose weights are not all completely learned [19]. Before
the success of AlexNet [15] in training deep end-to-end networks, the use of
random weights in early convolutional layers played an important role in training
deeper CNNs. The approach was attractive as it promised faster training times,
better generalisation, and the ability to learn deeper networks. Saxe et al. [19]
even offered strong theoretical motivations for why random filter weights in
CNNs would offer good performance in terms of: (i) frequency selection, and
(ii) translation invariance. One of the most notable works with respect to using
random weights within networks can be found in the Extreme Learning Machines
(ELMs) of Huang et al [13]. In its simplest form an ELM takes a proposed
network architecture and randomly initializes all hidden weights, leaving only
the final layer to learn. ELMs are advantageous as they allow for extremely deep
networks and rapid train times (as only the final layer needs to be learned). It
is widely understood, however, that these training strategies have a significant
performance gap in relation to their current end-to-end learned counterparts.

In this work, we leverage the separable convolution to compare the relative
effects of spatial and channel mixing on the performance of deep neural net-
works. By leaving either the spatial-mixing or channel-mixing parameters frozen
at their random initialization and only training the others, we can isolate the
contributions of the both types of parameters. Doing so reveals that learning
the channel-mixing parameters is far more critical to the effectiveness of a deep
model, and such models that only learn channel-mixing parameters perform
nearly just as well as their fully-learned counterparts. This revelation is doubly
interesting since it is the learning of the spatial-mixing parameters that account
for much of the training cost despite their relatively low importance.

We also show that models that only learn channel-mixing parameters are
naturally more resistant to adversarial attacks than fully-learned models. This
robustness can be further enhanced by then directly smoothing the random,
frozen spatial-mixing filters.

Lastly, we show that this phenomenon extends beyond the regime of classi-
fication problems and find that models that only learn spatial mixing are even
capable of learning to invert a permutation of pixels nearly just as well as fully-
learned networks.

We hope that these gained insights as to the role and effectiveness of spatial
and channel mixing in deep models will be of great value to the vision community
and that they will shed light on which parts of deep models are most critical to
learn while helping to inspire the intelligent design of future architectures.
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2 Related Work

Isotropic Architectures First popularized by the transformer [24], isotropic archi-
tectures (those in which the size of the representation remains fixed throughout)
have more recently made their way into the computer vision world. Image-GPT
[4] (based on the GPT language model [4]) was able to model sequences of
pixels and generate new images in raster fashion. Designed for discriminative
tasks, the Vision Transformer [8] used transformer blocks to achieve state-of-
the-art image classification results, but only after extensive pre-training. The
MLP-Mixer [22] then built off Vision Transformer’s success, but used a sim-
ple spatial-mixing MLP instead of the expensive self-attention module. While
the MLP-Mixer still required extensive pre-training, the newest addition to the
line of isotropic architectures, the ConvMixer [23], replaces the self-attention or
spatial-mixing MLP with a simple depthwise filter bank and achieves compara-
ble results without any pre-training. The main thing all these models have in
common is their isotropic structure. Here, “isotropic” refers to repeated blocks
of operations in which the latent representation does not change in shape. Fur-
thermore, in all of these models, the second half of each isotropic block is made
up of one or more strictly-channel-mixing layers.

Separable Convolutions Instead of mixing across channel and spatial dimensions
simultaneously, the separable convolution factorizes the operation into a depth-
wise and pointwise convolution. The depthwise convolution applies a disjoint set
of depth-1 filters to each channel of the input independently while the pointwise
convolution is simply a 1×1 convolution (or linear projection) on the pixels of
this intermediate representation. Separable convolutions are used extensively in
many state-of-the-art architectures [12,26,5] and have built-in implementations
in deep learning libraries [1].

3 Background and Setup

Before our experiments, we provide some relevant exposition regarding the op-
erations and architectures we use to illustrate the relative importance of spatial
and channel mixing in deep neural networks.

3.1 The 2D Convolution

As we begin our investigation into the importance of channel mixing, we focus
on the simple yet revolutionary ResNet [10] architecture. The original ResNet
architecture is composed of blocks of 2D convolution operations. Given the num-
ber of in and out channels (cin, cout) and the size of the square kernel (k), we can
represent the number of trainable parameters in the standard 2D convolution
(pconv) as

pconv = cin · cout · k2 (1)
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Fig. 1: Separable convolutions allow us to disentangle the roles of spatial and channel
mixing in deep networks by freezing either the depthwise or pointwise filters and learn-
ing the others.

With the vanilla Conv2D, it is hard to analyze the respective importance of spa-
tial and channel mixing since the two are entangled in a single linear operation.

To disentangle the spatial and channel mixing [12,26,5], we separate the
standard 2D convolution operation into a paired spatial-mixing (depthwise) and
channel-mixing (1×1 or pointwise) convolution. In a separable convolution, each
filter of the depthwise convolution operates on just a single channel of the input.
The pointwise convolution is simply a 1 × 1 convolution, or a linear projection
of each pixel.

After separating the standard 2D convolution into a depthwise and pointwise
convolution, we can then introduce a depth multiplier to increase the number of
filters per input channel. Naturally, this also increases the number of channels
in the pointwise filters since the intermediate representation will now have more
channels. Given the number of in and out channels (cin, cout), the size of the
square depthwise kernel (k), and the depth multiplier d, we can represent the
number of trainable parameters in the separable 2D convolution (psep) as

psep = pdepth + ppoint

= cin · k2 · d+ cin · d · cout
(2)

By exploiting the inherent dependencies between nearby pixels, the standard 2D
convolution—and its separable cousin—offer vision systems a cheap, yet effective
way of extracting information from images.
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Fig. 2: While the fully learned ResNets (Full) outperform all others, we see that the
models that only learn channel mixing (Chans) remain quite competitive, especially so
on ImageNet (right). Conversely, the models that only learn spatial mixing (Space) lag
very far behind the others.

3.2 The ConvMixer

As the latest (at the time of writing) in an ever-growing line of isotropic vision
models [4,22,8], the ConvMixer [23] architecture adapts the (at this point) classi-
cal method of convolutions to the equi-sized representation (isotropic) paradigm
of transformer models. Perhaps more importantly for our analysis, it serves as a
state-of-the-art convolutional model in which the convolutions are already sepa-
rable. In other words, the ConvMixer consists of strictly depthwise and pointwise
convolutions. This allows us to examine the computational benefits of learning
only channel mixing without the added overhead of converting the standard
convolutions into separable ones.

The ConvMixer [23] architecture consists of depthwise convolutions (wrapped
in a residual connection) and pointwise convolutions. Specifically, a depth-n
ConvMixer consists of a one-layer patch-projection stem, n depthwise-pointwise
blocks, a global average pool, and a linear classifier. All throughout, the repre-
sentation maintains the size to which it is projected by the stem (hence the term
isotropic).

3.3 Is Channel Mixing (Almost) All You Need?

By isolating the spatial and channel-mixing parts of the standard convolution
into separable components, we can analyze the contribution of channel mixing
alone to the success of convolutional neural networks. To do this, we now in-
troduce a form of the separable convolution (Figure 1) wherein we leave the
depthwise (spatial-mixing) filters frozen at their initialized values and only learn
the pointwise (channel-mixing) filters during training. In our results, this is in-
dicated by “Chans” whereas the fully-learned models are indicated by “Full.”

Note that the number of trainable parameters does not depend on the size
of the kernel (k) since only the pointwise parameters are learned. Furthermore,
we can ensure the number of trainable parameters in the pointwise convolution
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is equal to that of the corresponding standard Conv2D by setting d = k2:

d = k2

=⇒ cin · cout · k2 = cin · d · cout
=⇒ pconv = ppoint

(3)

For ResNet architectures, the standard convolution kernel is of shape 3×3, so
we would set d = 32 = 9 to use the same number of parameters in our channel-
learning-only convolution (and d = 3 to use one third of the parameters).

Here this is simply used as a heuristic to create models with similar parameter
counts to the vanilla ResNet architecture. All of our separable ResNet models
will thus have a depth-multiplier of 9, regardless of which parameters are being
learned.

4 Experiments

After motivating with some relevant background, we now begin our study into
the capabilities of networks that only learn channel mixing. Section 4.1 applies
our hypothesis to classical ResNet [10] architectures. Then in Section 4.2, we
move on to the naturally separable ConvMixer [23] architecture to illustrate fur-
ther computational advantage. Lastly, in 4.3, we explore a practical application
in the form of architectural adversarial robustness. Our code will be made public
upon publication.

4.1 ResNet Experiments

For these experiments, we train all models under identical conditions: the same
number of epochs, same batch size, same learning rate, same decay schedule,
etc. Any and all differences (or similarities) in performance are due entirely to
the intrinsic properties of the architectures themselves.

Model Architectures For our first set of experiments, we employ the ResNet
[10] architecture with the identity mapping modifications introduced in [11].
A depth-n CIFAR [14] ResNet contains a 1-layer stem, 2n layers for each of
the 3 blocks, and a linear classifier, for a total of 6n + 2 layers. Similarly an
ImageNet [6] ResNet contains a 1-layer stem, 2n layers for each of the 4 blocks,
and a linear classifier, for a total of 8n + 2 layers. The “depth” in our plots
represents this n. All separable ResNets have a depth multiplier of 9.

Classification Gap For our ResNets that learn only channel mixing (Chans),
any spatial mixing is done using depthwise filters fixed at their random initializa-
tions. Conversely, for those that learn only spatial mixing (Space), any channel
mixing is done through the pointwise 1x1 convolutions frozen at their initial
states.
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Fig. 3: Left: We see a large increase in speed when learning only channel-mixing param-
eters as opposed to both spatial and channel-mixing. Right: Spatial-mixing parameters
seem to have a much higher computational cost than channel-mixing.

When we look at the performance of fully-learned ResNets versus those learn-
ing only channel mixing (Chans), we make a startling discovery: the gap in
classification accuracy is barely there at all (Figure 2). One might question the
generalization of this observation, noting that CIFAR [14] is a simple dataset,
and the performance may just be saturated. Yet, the trend also holds for Ima-
geNet [6], a much larger and more complex dataset. Furthermore, we also see
that networks only learning spatial mixing (Space) consistently perform signifi-
cantly worse than those learning only channel mixing.

One might note that the number of spatial mixing parameters in a separable
convolution, learned or not, is inherently smaller than that of channel mixing
parameters. This is true; however, the same can also be said of the standard
convolution. In a typical network, the channel mixing dimensions that contribute
to the weight size (cin · cout) are typically much larger than the spatial mixing
dimensions (k · k).

Ultimately, the shown fact that networks learning only channel mixing achieve
competitive results to those that are fully learned comes as quite the surprise
and calls into question the significance of learning the spatial and channel mixing
operations in general.

Computational Considerations A forward pass and back-propagation through
an unlearned layer should be significantly faster than learnable one. We see this
clearly in Figure 3: the networks with fully-learned separable convolutions (Full)
take significantly longer to train than those with frozen spatial or channel-mixing
layers (Space, Chans).

In Figure 3, we also see that the networks only learning spatial mixing (Space)
have a much higher ratio of compute time per trainiable parameter than the fully
learned separable networks (Chans). At first, this might just seem due to the
spatial-only networks simply having fewer trainable parameters than the fully
learned ones. However, we also see that the networks only learning channel mix-
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ConvMixer (CIFAR-10) ConvMixer (CIFAR-100)
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Fig. 4: With the ConvMixer architecture, we can better analyze the direct contribu-
tions of spatial and channel mixing without altering the original model. We again see
networks that only learn channel mixing (Chans) remain competitive with their fully-
learned counterparts (Full) while completely out-classing those that only learn spatial
mixing (Space).
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Fig. 5: While randomly initialized filters can provide competitive results, the same is not
true for any arbitrary, fixed filter. Random filters work best when they are uncorrelated
from eachother, allowing them to extract different information.

ing (Chans), which also have fewer trainable parameters than the fully trainable
ones, have a lower train time to trainable parameter ratio than the fully learned
separable convolutions (Full). With these two observations in mind, we can infer
that learnable spatial-mixing parameters have a higher associated computational
cost than learnable channel-mixing parameters.

Static Filter Structure While we have shown that learning spatial mixing is
not necessary to achieve competitive performance without changes to the model’s
architecture, the static filters cannot be completely arbitrary; they must still hold
some basic properties to adequately transform the input signal.

Looking at Figure 5, we see the performance of the fully-learned separable
convolutions as the leftmost (blue) column. The next column (red) represents
the separable convolution that only learns channel mixing. We again note that
the randomly initialized spatial mixing performs only slightly worse than the
fully-learned version. We label this column “Different” to contrast with the next
(yellow) column, “Same.” For this experiment, we apply the same set of 9 ran-
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Fig. 6: We only see a minimal time save by not learning the channel mixing, but there
is significant speedup when not learning the spatial mixing. A much larger portion of
the total train time of the fully-learnable version seems to be taken up by the spatial
mixing parameters than the channel mixing counterparts.

domly initialized kernels to every input channel. The large performance drop
here shows us that highly-correlated filters do not make good feature extractors
since they cover the same spectrum of signals. The next drop-off to the box
filter (green) occurs because box filters are perfectly translationally correlated
with each other. Lastly, the catastrophic failure of the identity filter (orange)
tells us that although we might not need to learn it, spatial mixing is still an
integral part of discriminative networks.

4.2 ConvMixer Experiments

We use the code provided along with the ConvMixer paper and a model with
128 channels, a kernel size of 8, and a patch-size of 1 across various depths.

Naturally Separable Performance Now that we are dealing with a naturally
separable architecture, all comparisons can be made directly with the original
model. In Figure 4, we again see that if we learn only channel mixing, we still
achieve results competitive with the fully-learned architecture.

As we saw with ResNet (Figure 3), the spatial-learning ConvMixers have a
much higher ratio of train time to trainable parameter count than the channel-
learning models, as seen in Figure 6. This observation is again validated by the
fact that the channel-learning ConvMixers have a significantly shorter train time
than the spatial-learning ConvMixers despite having higher trainable parameter
counts.

Filter Observations After years of networks using mostly 3×3 filters, the
ConvMixer [23] takes a step back to larger filters that are more interpretable to
the human eye. In Figure 7, we see the learned filters of a depth-4 ConvMixer.
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Layer 1 Layer 2 Layer 3 Layer 4

Fig. 7: Learned depthwise filters from a ConvMixer. Learned filters seem to follow
different distributions depending on layer.
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Fig. 8: Adversarial accuracy in separable ResNets (CIFAR-10). The networks with
static spatial mixing (Chans) are clearly more robust to adversarial perturbations than
their learned counterparts (Full) and those that learn only spatial mixing (Space). (ϵ is
the magnitude of the adversarial perturbations.)

The learned filters are clearly more structured than their random counterparts,
and the filters of each layer seem to follow a different distribution. Despite the
structure clearly present in these learned filters, the random filters (as seen in
Figure 9) still yield comparable performance.

4.3 Adversarial Robustness

Another practical application of our discovery lies in the adversarial setting.
Adversarial examples are those specifically curated to fool a neural network into
making a mistake at inference time by adding targeted noise to the sample [9].
Typically, the adversarial perturbations are small enough in magnitude that the
semantic meaning of the example does not change and that a human observer
cannot even notice them.

The Fast Gradient Sign Method First, we will quickly introduce one of
the first and most simple adversarial attacks developed: the Fast Gradient Sign
Method [9]. This method calculates the adversarial perturbations by taking the
gradient of the network’s loss with respect to the target image and mapping
them to the ℓ∞ ball.
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Fig. 9: Smoothing the random filters causes our trained models become significantly
more robust to adversarial perturbations.

Given a neural network (F), target sample (x), and label (y), the adversarial
example (x̃) is calculated as

x̃+ ϵ · sign
(
∂F(x, y)

∂x

)
(4)

where ϵ is the radius of the ℓ∞ ball.

This is a simple attack that can be defended against by a variety of methods
[2,9,18,17,3], but it is still a useful tool for analyzing the natural adversarial
robustness of an architecture without taking any preventative measures.

Natural Robustness in Separable ResNets As we see in Figure 8, ResNets
with separable convolutions that only learn channel mixing (Sep-Res) are signif-
icantly more robust to the adversarial perturbations than the fully-learned sep-
arable ResNets. Without any further modification, the models that only learn
channel mixing seem to be less susceptible to targeted noise.

Induced Robustness in ConvMixers Looking at the learned filters (Fig-
ure 7) , one could mistakenly link the smoothness of learned filters to their poor
adversarial robustness, relative to that of random filters (Figure 8). Our next
experiment shows this to be false.

We can artificially increase the smoothness of our random filters by applying
a low-pass smoothing operation directly to the filters themselves. After doing so,
the high-frequency components of our random filters have been removed, and
the filters now focus more on the mid to low frequencies, just as the learned
filters do.

In Figure 9, we see that instead of hurting performance, smoothing the ran-
dom filters actually significantly increases their robustness to adversarial attacks
while not hurting performance on clean data (orange line) at all. In fact, we see
that smoothing results in a relative performance increase of over 25% for the
highest magnitude of attack. We then conclude that there must be a different
reason (statistical shortcuts, etc.) for the learned filters’ poor robustness.
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(A) Ground Truth (B) Scrambled Pixels

(C) Reconstruction (Full) (D) Reconstruction (Chans)

Fig. 10: Models that only learn channel mixing are capable of learning near perfect
reconstruction of MNIST digits from their shuffled pixels.

4.4 Pixel Un-Shuffling

Thus far, we have only shown the power of models that only learn channel mixing
as it applies to classification tasks.

As evidence that such models can also prove effective for other tasks, we
now apply them to the pixel un-shuffling problem. We define this problem as
applying a deterministic random permutation of the spatial coordinates of all
the pixels of the input image and tasking the model with reconstructing the
un-corrupted signal. (To be clear, the same permutation pattern is applied to
every input image.)

For images xi, pixel permutation σ, and network F with parameters θ, our
formal training objective becomes

min
θ

1

n

n∑
i=1

∥xi −F(σ(xi); θ)∥2

For this task, we use a patch-size 1 ConvMixer with a slight modification: in-
stead of a global average pool and classification head, we simply apply a linear
projection back up to the appropriate number of channels (1 or 3). We chose
the ConvMixer because it’s isotropic structure makes it ideal for image-to-image
translation, and its natively separable design allows for easy analysis of the ef-
fects of spatial and channel mixing.

Intuitively, one would think the learning of spatial mixing is crucial for the
task of “moving” pixels back to their correct location. However, our experiments
show that, yet again, models that only learn channel mixing perform nearly just
as well as their fully-learned counterparts. Randomly selected examples from the
test sets can be seen in Figures 10, 11, and 13.
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(A) Ground Truth (B) Scrambled Pixels

(C) Reconstruction (Full) (D) Reconstruction (Chans)

Fig. 11: Moving to Fashion-MNIST, a significantly more complex dataset than MNIST
(Digits), the models that learn only channel mixing still achieve near perfect un-
shuffling with results almost indistinguishable from those of the fully-learned models.
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Fig. 12: CIFAR-10: PSNR for Pixel Un-Shuffling.

On all of MNIST [7], Fashion-MNIST [25] and CIFAR-10 [14], the test-set
results for both model types are shockingly close. Unlike the classification prob-
lem, these results give us a clear, human-interpretable notion of the fact that
networks can seemingly learn effective point-wise linear transforms to leverage
the natural spatial mixing provided by the randomly-initialized depth-wise con-
volutions. In Figure 12, we include plots showing PNSR trends for various model
architectures on CIFAR-10. We see that the performance increases with depth,
width, and kernel size. We include PNSR plots for MNIST and Fashion-MNIST
as well as results for models that only learn spatial mixing in the supplementary
material.
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(A) Ground Truth (B) Permuted Pixels

(C) Reconstruction (Full) (D) Reconstruction (Chans)

Fig. 13: CIFAR-10: Randomly selected test set samples and reconstructions from best
performing model (d = 16, w = 512, k = 7)

5 Conclusion

While previous works have shown the merits of fully frozen networks as feature
extractors [19,13], none (to the best of our knowledge) have explored the question
of which parameters are the most important or beneficial to learn.

In this work, we have done just that; we have shown empirically that net-
works that only learn channel mixing can reach nearly the same performance
as fully-learned networks without any further alterations. We also showed that
networks with random spatial-mixing weights are naturally more robust to ad-
versarial attacks, and we also offer a method for further increasing the adversarial
robustness of such networks. Lastly, we showed that this phenomenon extends
past the classification regime and that such restricted models are also capable
of learning other tasks, such as pixel un-shuffling.

We hope our work will be of use to the vision community, spurring further
questions as to the inner-workings of neural networks and leading to more effi-
cient and robust models.
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