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Abstract— Neural rendering for novel view synthesis has
been a rising problem within the computer vision community.
Among the many proposed techniques, neural radiance fields
(NeRF) have proven to be one of the most effective. NeRF
represents static scenes as a fully-connected deep network
with a 5D coordinate input (x, y, z, θ, ϕ) and an output of
color and density (RGBσ). The system introduced by NeRF
builds a 3D representation of a scene given a number of 2D
images. When applied to dynamic scenes, NeRF’s performance
significantly declines. Recent strides have been made towards
solving this problem with the likes of CoNeRF and Non-Rigid
NeRF; both works have shown to be effective in re-rendering
and manipulating neural radiance fields despite the presence of
dynamic objects. However, this previous research is hindered
in both the labor and function domain. CoNeRF requires the
tedious task of manually annotating the dynamic component
of the input images; whereas Non-Rigid NeRF is unable to
generalize to new movements and only works with a single
deformable object. We propose a followup method capable
of re-rendering and manipulating a dynamic object within a
radiance field without the need for manual annotation. With
our proposed method, dynamic scenes with the human shape
can be more easily rendered and manipulated. In addition to
dynamic scenes, our work also brings benefits to static scene
manipulation. We hope that this work sheds light on future
NeRF manipulation methods.

Index Terms— keywords, Computer Vision, Neural Render-
ing, Computer Graphics

I. INTRODUCTION

Neural Radiance Field (NeRF) has recently become the
standard method for view synthesis. This is certainly not
without reason, as NeRF has outstanding performance on
both static [1]–[5] and dynamic objects [6], [7]. Despite this
performance in both domains, radiance field manipulation
and usability remains an open research question. There is
a large amount of research dedicated to the application of
NeRF to dynamic scenes, but it is often tedious and requires
much work.

One such work that aims to control the dynamic movement
within neural radiance fields is CoNeRF. CoNeRF yields
impressive results, but its scalability is largely limited due
to the need for manual annotation of the controllable com-
ponent. There also exist few methods that utilize automatic
segmentation of the dynamic and static components but fail
to provide fine-tuned rendering selection, such as Non-Rigid
NeRF [6]. In this paper, we propose a method capable of
automatically, and accurately, annotating both a dynamic and
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static human body for use in neural radiance field control
and manipulation. For use in dynamic scenes, our method
proves to be effective at radiance field control with CoNeRF.
Within the static domain, the same method is effective at seg-
mentation and rendering control. This work predominantly
showcases efficient usage of image segmentation for dynamic
scene control while also revealing an additional use-case for
static scenes. In specific, this paper describes a method that
offers:

• Automatic Selection of the Human Shape for Neu-
ral Rendering. Automatically selecting the shape of
interest within a scene brings heaps of improvements
to both static and dynamic neural rendering, namely
the elimination of manual annotation. While currently
structured to solely segment human bodies, this work
can be extended to a variety of other classes.

• Dynamic Scene Manipulation. Many of the NeRF
methods that apply to dynamic scenes [8] require a
degree of manual annotation or are limited in function
[6]. This work applies automatic segmentation methods
to this dynamic scene control.

• Static Scene Manipulation. Given the selected ob-
ject(s) the neural radiance field can be rendered without
the selected objects, or without the background.

II. RELATED WORKS

Our work is closely related to a number of recent devel-
opments made within neural rendering.

A. Neural Rendering for Novel View Synthesis

NeRF has led to cascades of research on neural rendering
for novel view synthesis. The original method proposed by
Mildenhall et al. [1] is capable of building a high fidelity
3D representation of a scene given a number of 2D images.
When initially published, a large constraint of this method
was its inability to represent non-rigid or dynamic scenes.
Since then, there have been a few works that extend NeRF’s
exemplary performance on static objects to objects in motion
[6]–[8].

B. CoNeRF: Controllable Neural Radiance Fields

CoNeRF is one of the most influential NeRF followup
works that propose a method for neural radiance field control
[8]. The method proposed in this work controls object
movement through tedious annotation of the controllable
component (i.e. arm moving) and a value assignment. To
annotate the controllable component, CoNeRF uses a manual
click and drag annotation software known as labelme [9].
At each annotated frame, a value is assigned to represent



Fig. 1. NeRF architecture

the transition status. For instance, an arm fully located at a
person’s side would be assigned a value of -1.0, an arm that
is full stretched out would be given a value of 1.0, and an arm
that is somewhere in the middle would be assigned a value of
0.0. Since our work brings automatic annotation to CoNeRF
and improves its usage, it is closely related. However, our
work does not overlap with that of CoNeRF’s [8] in terms of
contribution. We only use this preexisting work as a means
to display our application of automatic annotation.

C. Non-Rigid NeRF

Non-Rigid NeRF [6] focuses on the automatic separation
and manipulation of a scenes rigid (static) and non-rigid
(dynamic) counterparts. Non-Rigid NeRF is largely limited
in function, this work is only capable of scene manipulation
when composed of both static and dynamic objects. Our
work significantly extends upon theirs since we enable radi-
ance field manipulation regardless of the scenes composition;
meaning that distinct dynamic and static components are not
required.

III. METHOD

Our method consists of four components (i) data collection
and preparation, (ii) automatic segmentation, (iii) NeRF ar-
chitecture for automated content editing, and (iv) automated
segmentation for dynamic scenes.

A. Data Collection and Preparation

The data used for this work was captured using an
iPhone 13 Pro’s 240fps slo-mo camera. For a thorough 3D
representation of the scene and a large number of viewing
angles, the video was captured in a circular motion with a
moving camera. After the video is captured, a sparse set of
the captured frames (approximately 300) are passed through
COLMAP to obtain the camera poses that are needed to
determine where the camera is located during each frame.
This is important because without the poses, there is no
structural information of where these images were captured
in relation to other images, and are needed as inputs to
NeRF’s fully connected network that will later be discussed
in further detail.

B. Automatic Segmentation

Fig. 2. Body Pix 2.0 generates near perfect masks. These binary masks
are used to determine the object of interest. Areas marked as white are
editable and areas marked as black are unaffected. It is important to note
that these masks can be inverted. When this happens, the areas marked as
white become black and the areas that were once marked as black become
white, effectively switching the areas of interest.

BodyPix 2.0 is an effective segmentation software that is
directly trained to recognize, and segment, the human shape.
As shown in Fig. 2, the masks that BodyPix 2.0 creates are
quite accurate. The masks generated by this software are
used to determine which object in our scene we wish to
manipulate.

C. NeRF Architecture for Automated Content Editing

At the heart of this work is the standard NeRF method.
[1]. This method works by representing a static scene as a
fully-connected deep network with a 5D coordinate (x, y, z,
θ, ϕ) and an output of color and density (RGBσ). As shown
in Fig. 1, given an image from a given viewing direction or
camera position (θ, ϕ) a ray is passed through each pixel. As
that ray is sent through the pixel at location (x,y), a sampled
point z is sent through a fully connected deep network and
is outputted a color (RGB) and density (σ) where density is
a value that denotes whether or not an object is present.



Fig. 3. The standard NeRF method yields impressive results when applied to our own image sequences. The inputs to both of the above experiments
contain approximately 150 images from a variety of different viewing directions.

This process of sampling a point along the ray and passing
it through the deep network to receive an output of color and
density is repeated for every sample along the ray as shown in
part b of the figure. Whenever this process is completed, all
of the sampled points are combined using a classical volume
rendering technique [10] to receive the final prediction of the
pixel’s color as shown in part c. The final step (d) within
the NeRF architecture is to compute the loss between the
rendered color and the ground truth, then take that loss to
reduce the rendering error in future iterations.

With the standard NeRF method now being outlined, we
will now present our simple, yet successful, modification that
allows for automated content editing. Since NeRF renders the
color of a pixel from a sampled ray, removing the entire ray
effectively prevents portions of a scene from being rendered.
When this ray removal is applied at a larger scale, by utilizing
selective binary masking, entire objects can be removed from
the scene. Partnering binary object masking with ray removal
is the extent of our method that allows for static scene
manipulation.

D. Automated Segmentation for Dynamic Scenes

Fig. 4. Body Pix 2.0 is capable of automatically generating masks for
parts of the body, such as an arm.

Our method of utilizing automatic segmentation for static
NeRFs, also brings benefits to NeRFs representing dynamic
scenes. Instead of removing components of a scene, we
applied this method to more easily control a scene. CoNeRF:
Controllable Neural Radiance Fields [8] acted as our standard

dynamic method to which we made modifications to. This
method uses manual annotation to signify which component
within a scene is in motion, which is oftentimes a tedious
task. The automatic segmentation software, Body Pix 2.0,
entirely removes the need for manual annotation of the
controllable segment of the scene as shown in Fig. 4. The
primary modification made to CoNeRF was to directly accept
binary images as labels instead of a json file containing the
mask coordinates generated by labelme (a manual annotation
software). Other than this modification, the original CoNeRF
code was used for our experiments.

IV. EXPERIMENTS

The experiments that were conducted for this work include
standard NeRF without modifications acting as our baseline,
static NeRF modifications with both manual and automatic
annotations, and dynamic NeRF modifications with auto-
matic annotation. In the following sections we will explain
each of these experiments in complete detail.

A. Baseline: Standard NeRF

This first experiments conducted for this project used the
standard NeRF code without any modifications. The NeRF
architecture, as shown in Fig. 1, sends rays through every
pixel from a given viewing direction, samples along each
of the rays to obtain (RGBσ), and applies a volumetric
rendering technique [10] to accumulate the sampled points
and render each pixel’s predicted color. The loss between
the ground-truth and this prediction is used to reduce the
rendering error in future iterations. We applied this method
to two of our own image sequences, a toy and a person
(Fig. 3), with each sequence containing approximately 150
images.

B. Static NeRF Modifications

The two experiments for static NeRF modifications con-
cerned object and background removal. For both of these
experiments, the standard NeRF model was modified such
that certain rays falling within a masked region are not
rendered.



Fig. 5. Our method is capable of fully removing an object from a
neural radiance field (bottom). This successful removal becomes even more
apparent when compared to the standard NeRF output and depth map
generated from the same images (top).

1) Object Removal: Our method for object removal was
first tested on a manually annotated image sequence as shown
in Fig. 5. As expected, manual annotating a large amount
of images is tedious. Nevertheless, this experiment demon-
strated the effectiveness of our method before introducing
automatic annotations from Body Pix 2.0.

The success of this method continues to hold when using
Body Pix 2.0’s automatic annotation to generate binary
masks. As shown in Fig. 6, the person is removed from
the neural radiance field. By using a much more efficient
annotation method, these experiments become much more
feasible.

2) Background Removal: Similar to the object removal
experiments, we first observed the result of our background
removal method using a manually annotated scene before
using an automatically annotated one. Fig. 7 showcases a
viewpoint taken from this experiment. Since annotations for
our project are binary (i.e. selected component is marked as
white and unaffected as black), it took little modification to
our object removal method to remove the background. Using
the automatic annotations from Body Pix 2.0 we can more
easily remove the background from NeRFs, as shown in Fig.
8.

C. Dynamic NeRF Modifications using CoNeRF

In order to apply our usage of automatic segmentation
to CoNeRF, a NeRF variant that aims to control dynamic

Fig. 6. When applied to scenes in which the object is automatically
annotated by Body Pix 2.0, we see similar performance. The standard NeRF
rendering (left) compared to the modified rendering (right) show that the
person is almost entirely removed from the scene. The shoes of the person
partially remain. This can be explained by imperfect annotations.

Fig. 7. By inverting the manually annotated binary mask, we can select
and remove the background of the scene as opposed to the toy.

Fig. 8. Inverting the automatically annotated binary mask lets us select
and remove the background of the scene as opposed to the person.



Fig. 9. Controlled output obtained from CoNeRF using automatic annotation for the arm from transition states -1.0-1.0 where -1.0 is the start state and
1.0 is the final state.

scenes, a minor modification was needed. The original CoN-
eRF code only accepts manual annotations generated from
LabelMe in the form of a json file and then converts those
coordinates to a binary mask. To make this code suitable
for our automatically generated masks, we simply removed
the json conversion and directly used our binary masks of
the dynamic component. Now with CoNeRF accepting our
binary masks, we now supplied transition values, from -1 - 1,
to a sparse set of the captured frames. The final controllable
output for this experiment of both right arm and left arm
movement can be found in Fig. 9.

V. CONCLUSIONS

This work proposed a method for automated content
editing in NeRFs that allows for simple manipulation of
both static and dynamic neural radiance fields. Using the
automatically generated masks from Body Pix 2.0 and our
ray removal method, static scenes can be rendered without
a person present and the background intact or without the
background and the person unaffected. When applying our
use of automatic annotation to preexisting dynamic NeRF
methods, such as CoNeRF, we can remove the need for man-
ual annotation of the controllable component. Both intended
applications of this method proves to be successful.

While the experiments presented within this paper were
a success, there still remains numerous directions for future
work. A few of the most promising steps are to improve the
masking coverage to more fully capture the object of inter-
est, apply different segmentation methods to automatically
annotate objects of different classes, extend this method to
other dynamic NeRF variants that rely on manual annotation,
and increase the editing possibilities.

ACKNOWLEDGMENT

This project was funded by the National Science Founda-
tion (NSF) under Grant No. 1659774. I want to say thank you
to the Robotics Institute Summer Scholar program organizers
Dr. John M. Dolan and Rachel Burcin, my faculty mentor Dr.
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